KaggleDB Solutions Users Country Medal
About Misc

Google Cloud & YouTube-8M Video Understanding Challenge

Final LB Best sub LB Late sub LB Top 1000 subs Kaggle competition page

Best sub leaderboard

What if every single team had chosen their best sub for final scoring?
This LB is based on that scenario.
Team name Public(final) Private(final) Private(best) Public score Private score Date
WILLOW ○○ 1 1 1 0.8498234211596621 0.8496655608232926 2017-06-01
monkeytyping ○○ 2 2 2 0.8461411820433553 0.8458965313364246 2017-06-02
offline ○○ 3 3 3 0.8454325856636551 0.8454193702472935 2017-06-02
FDT ○○○○○○ 4 4 4 0.8419818303086257 0.8419303968364255 2017-06-02
You8M ○○○ 5 5 5 0.8419210035664005 0.8418542584698557 2017-06-02
Rankyou ○○ 6 6 6 0.8408949496755159 0.8408076884876909 2017-06-01
Yeti ○○○○ 7 7 7 0.8395744527332366 0.8396129221625508 2017-06-02
SNUVL X SKT ○○○○ 8 8 8 0.8388991974716765 0.8389380127535868 2017-06-02
Lanzau Ramen ○○○○○○ 9 9 9 0.837366002179185 0.8372559857404459 2017-06-02
Samaritan ○○○ 10 10 10 0.8367000354299934 0.8366245303672076 2017-06-02
rickymf4 11 11 11 0.8356959497441531 0.8356527616596329 2017-06-01
The Machine Learning Society ○○○○○○ 12 12 12 0.8353336500441942 0.8352701469969291 2017-05-23
UQMM ○○ 13 13 13 0.835239122056565 0.8351215956759609 2017-04-05
onepromise 14 14 14 0.8343414046583911 0.8341462932862811 2017-06-02
GaoSiao ○○ 15 15 15 0.8326747403789296 0.8325646917584347 2017-06-02
IIT Madras UTubers ○○○○ 16 16 16 0.8323984044078676 0.8322313250329787 2017-06-01
YTKiller 17 17 17 0.8308562306413165 0.8308620928587791 2017-06-02
Chuck Cho 18 18 18 0.8304728696188837 0.8303283996930191 2017-05-14
spring onion 19 19 19 0.8304012354770454 0.8302540378687117 2017-06-02
DeeepVideo ○○○○ 20 20 20 0.8293061855747754 0.8291488105648307 2017-06-02
gkkg_gcvu 21 21 21 0.8280119328284417 0.8280264220706162 2017-05-19
DL2.0 ○○○○○○○○○○ 22 22 22 0.8275325500979592 0.8274328699005992 2017-06-02
ML_project ○○ 23 23 23 0.8271793137865466 0.8271653218304207 2017-06-02
SJTU-MVIG ○○○○○ 24 24 24 0.8268966409957237 0.826947171755505 2017-06-02
H.M.J ○○○ 26 25 25 0.8263493004028937 0.8263369733097264 2017-05-23
Towards Robust Architecture-In.. ○○ 25 26 26 0.826442909501083 0.8263248533030828 2017-06-02
master_yoda 27 27 27 0.8263419220344225 0.8262809721961387 2017-06-02
jk_fr 28 28 28 0.8260944507317864 0.8261394216935116 2017-05-26
nehz 29 29 29 0.8257246944105147 0.8256973496004555 2017-06-02
spb_team ○○ 31 30 30 0.8253095372065654 0.8254558749268552 2017-06-02
Junwei Yang 30 31 31 0.8254032319719304 0.8253466172434516 2017-05-21
Maxim Vakhrushev 32 32 32 0.824388477471582 0.824353213241487 2017-06-02
CorsairCoastg 33 33 33 0.8225952470753082 0.8225000680532912 2017-06-02
Chen Xin 34 34 34 0.8212547822018369 0.8210015242216885 2017-05-25
Random Forest ○○○ 36 35 35 0.8210568725841826 0.8209859192384377 2017-06-02
Yucheng Shi 35 36 36 0.8211576045203817 0.8209038656776613 2017-06-02
Chris Cross 37 37 37 0.8195712475762928 0.819724273324353 2017-03-23
GlobalMaksimum ○○○ 38 38 38 0.8192506525396815 0.8192990412331136 2017-05-23
jmygogo 40 39 39 0.8188418299010367 0.8189146324850997 2017-06-02
nrcjea001 39 40 40 0.8190474509144929 0.8188578038663883 2017-05-27
zhongtian 41 41 41 0.8188210693004425 0.8187951791976263 2017-06-02
The 21-day Expendables ○○○○○○ 42 42 42 0.8185721141657406 0.8182069955766663 2017-06-02
Mark Peng 43 43 43 0.8181999583890355 0.8180551296403132 2017-05-31
DelveVideo 44 44 44 0.8176853939083463 0.8176214108053453 2017-06-02
Tōshō-gū 46 45 45 0.8168805439235671 0.8170336371545978 2017-05-30
sevenfour 45 46 46 0.817032920722072 0.8169833599653927 2017-05-28
Xers ○○ 48 47 47 0.8158724925874642 0.8159577531733471 2017-06-02
Mikhail Trofimov 47 48 48 0.8160086874096063 0.8159542033897903 2017-05-22
MA 49 49 49 0.8154444243027835 0.8152987779157523 2017-05-19
n01z3 50 50 50 0.8151871641684326 0.8150421679624097 2017-06-02
w_________g 51 51 51 0.8145275561746643 0.8147033250523497 2017-06-02
shekkizh 52 52 52 0.8145094658120894 0.8145281768541763 2017-03-16